PV Generation Industry in China

Wang Jing

Global Climate Change Institute, Tsinghua Univ.

Email:jingwang03@mails.tsinghua.edu.cn

- Background
- PV generation technology
- Current status of PV in the World
- Current status of PV in China

Background

- Energy crisis
- Power shortage

Energy crisis

—— a problem the world has to face.

Expected global energy, Japan (1860~2060)
Keio-Tsinghua

2004.11.23

M

The fossil energy resources are very limited in China, solar energy is the future alternative resource.

Composition of Energy Consumption (2003)

- ■coal (煤炭)
- □oil (石油)
- □ natural gas (天然 气)
- hydropower and other (水电及其他)

Installed capacity and generation structure in China, 2002

	Installed Capacity/GW		Generation/TWh	
	Capacity /GW	Proportion /%	Generation /TWh	Proportion /%
Coal	265.54	74.5	1352.2	81.7
Hydro	86.07	24.1	274.6	16.6
Nuclear	4.46	1.25	26.5	1.6
Total	356.57	100.0	1654.2	100.0

 $[\]odot$ Some renewable energy generation such as wind with the capacity of 0.5GW (0.15%) are not included in the table above.

The future power shortage has to be filled up by RE power

It is foreseen that there will be a power shortage:

- □ 37 GW in 2010
- □ 102 GW in 2020

Considering the requirement and resources:

- ☐ The gap will not be filled up by coal, hydro and nuclear power
- ☐ The gap has to be supplied by RE

Solar Resource in China

- Criterion for measurement
 - Total radiation
 - Sunlight hours
- Annual Theoretical reserves: 1.7×106Mtce
- Annual Radiation: 3.3×10³~8.4×10⁶kJ/m²
- Above two thirds area of the country where sunlight is more than 2000 hours a year.
 - □ Most of the solar resources are distributed in Tibet, Qinghai, Sinkiang,
 Gansu, Ningxia and Inner Mongolia.
 - □ Resources in the east, the South and the Northeast are ordinary.
 - □ Solar resources are poor in Sichuan Basin

Solar Energy Distribution of China

Color	Radiation Level	Annual Radiation/KWh/ m ²	Daily Radiation/KWh/m ²
Red	Best	≥ 1860	≥ 5.1
Orange	Good	1500 – 1860	4.1 – 5.1
Yellow	Ordinary	1200 – 1500	3.3 – 4.1
Blue	Poor	< 1200	< 3.3

PV Generation Technology

Keio-Tsinghua 2004.11.23

Module

PV Generation systems category

Typical PV generation projects

- Independent system
 - □ Independent village supply system
- Grid system
 - □ Building PV (BIPV)
 - 1~5kW
 - promoted in many developed countries
 - □ Very large scale PV (VLSPV)
 - 100kW~100MW
 - Desert and Gobi in the West of China Keio-Tsinghua 2004.11.23

IEA PVPS / Task VIII 6 June 2004, Paris

Global PV industry

- Production scale expanding
- □ 1980s
 - 1~5MW/year
- 1990s5~30MW/year
- 2001~200550~500MW/year,2003, 742.28MW。

Production of solar cell/module in the World, MW

- Cell technology developing rapidly
 - □ Emergence of new technology
 - ☐ Rising of cell efficiency
 - Single crystal cell commercialization efficiency is 13%~18%.
- Cost and price of module decreasing
 - □ In 2002, cost of some important manufacturers in the world is $2\sim2.3$ /Wp, price is $2.5\sim3$ /Wp;
 - □ Expected cost of cells in 2010 may decline to \$1/Wp, cost of PV system below \$2/Wp.

PV Cell Production in the World (PVNET2003)

PV generation industry in China

- History
 - 1958: begin to study cell production
 - □ 1971: satellites
 - □ 1973: land use
 - □ 1980s: government involved, motivate fast development
 - □ 1990s: important government projects, 'Bright project', 'deliver electricity to suburb'.
 - 2002: 'the plan of sending electricity to the area without power in the west provinces' sponsored by NRDC was incentive to the PV industry.

Current Status

- Production scale of cell/module expanding
 - □ 2003,12MW, about 2.2% all over the world;
 - □ 2004, expected 50MW, can be 5% of all in the world.

```
(above 90% for exportation, national market in 2004 may be 3\sim 5MW.)
```

- Cell/module cost continues to drive down.
 - ☐ From 65~80Yuan/Wp in 1980s to 25~28Yuan/Wp in 2003
- Improvements on industry chain and structure

Production of solar cells/modules in China, MW/a

Accumulated installation of PV system in China, MW

Issues of Chinese PV

Capacity imbalance of successive steps

- ☐ Silicon raw material: zero
- □ Wafer < Cell < Module</p>

```
trails behindathe developed counties.

Capacity: Gap: 85 MW

PV generation is too expensive
Gap: 65MWp

Around 3.77 tuan/kWh from grid system

Solar Module Capacity: 100 MWp
```


PV market in China

Keio-Tsinghua 2004.11.23

